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Qualitative analytic estimates of the stochasticity limit of one- and many-dimensional 
nonlinear oscillating systems are derived using the overlapping of first-order resonances 
as a criterion for stochasticity. Computational results obtained with several very 
simple transformations are compared with the analytic estimates. Numerical studies 
significantly below the stochasticity limit of a many-dimensional nonlinear system 
reveal an example of a very slow instability, the first, to the best of our knowledge. 
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1. I N T R O D U C T I O N  

Motivated by the very important  question of  long-term stability of  particle beams in 
storage rings, we study in this paper some mathematical models, namely nonlinear 
transformations, which replicate the essential elements determining the dynamical 
behavior of  particle motion in a storage ring. 

In Sections 2-4, qualitative analytic estimates of  the stochasticity limit of  one- 
and many-dimensional nonlinear oscillating systems are derived using the overlapping 
of  first-order resonances as a criterion for stochasticity. Computational results 
obtained with several very simple transformations are compared with the analytic 
estimates. 

The stochasticity limit, with instability above it and apparent stability below it, 
affords a gross description of the behavior of  stored particles. Especially for protons 
and antiprotons, where radiation damping is negligibly small, it is important  to 
ascertain whether or not motion below the stochasticity limit is truly stable. In 
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Section 5, we present a numerical example of a very slow instability below the stochas- 
ticity limit of a many-dimensional nonlinear system. 

2. A N A L Y T I C  E S T I M A T E  O F  T H E  S T O C H A S T I C I T Y  L I M I T  

2.1. Equations of Mot ion 

Consider the following canonical equations for a many-dimensional nonlinear 
oscillating system: 

i : Ef(I, O, t), 0 : w(I) @ e(~(I, O, t) (1) 

Here, I and 0 are N-dimensional vectors of momenta and phases, respectively, 
and E is a small perturbation parameter. 

The unperturbed motion with e = 0 is of maximum stability (it possesses all N 
motion integrals I = const). The problem to be studied is the qualitative behavior 
of the perturbed motion with eve  0. 

In the zeroth approximation (e = 0) the system (1) has the following solution: 

I = const, 0 = w(/)t (2) 

2.2. Resonances 

We expand the first equation of (1) in a multiple Fourier series 

] = ~ ~ f ~ ( I )  exp(inO + imK) (3) 

Introducing g? = 27r/T, where T is the period of  the external perturbation, and 
substituting the solution (2) into the right-hand side, we find the following new set of  
equations: 

i = ~ ~ fm~(I) exp(inO + imK) 
~ (4) 

0 = co(/), ~ = D. 

We have neglected the second term in the equation for 0, Eq. (1). This is a good 
approximation if the nonlinearity coefficient is not smallm: 

(5) 

The opposite case is considered in Section 3.3. 

2.3. Resonance W i d t h  

For sufficiently small perturbations E, only resonant conditions can have an 
important influence on the motion. In this case, the phase ~b~ = nO + rn• is a slow 
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variable. The phase oscillation equation for this isolated resonance can be found by 
combining Eqs. (4): 

~Jmn -=- nO 4- m~  = nO = n do)(I)/dt = n ( & o / ~ I ) l  

~m, = ne(~oJ/~I) fm~(1) exp(i~b~,) (6) 

Taking the real part  of  this expression, 

= cos (7) 

and linearizing it in the vicinity of  a fixed point, we obtain the following frequency 
for small amplitude oscillations: 

1"2~. = ne,(eoJ/eI) f . ~ ( 1 )  (8) 

I t  may be seen that (7) can be derived f rom the following Hamiltonian: 

1 "2 2 ~ r  - -  D ~  sin r  (9) 

This allows us to calculate over what range of frequencies Am the motion will lock 
onto the resonance, by comparing ~ .  to the depth of the potential well. We find 

n Am = 2 ~ .  = 4s .... (10) 

2.4. Overlapping of Resonances 

I t  is well confirmed (2~ that there occurs a strong instability with randomlike 
motion when many resonances overlap. The earliest indication for such an instability 
was probably found by Goward (3~ and Hine. (3a~ As an estimate for the stochasticity 
limit, we adopt the condition of resonance overlapping. The main difficulty is con- 
nected with the high-order resonances [the approximations following after (4)], 
where the question arises whether the contribution of high-order resonances is 
essential for the overlapping condition. We base our estimates on the hypothesis that 
it is sufficient to take into account only first-order resonances according to (4) and 
that the influence of all higher-order approximations can be neglected. 

Consider first the one-dimensional case. From the resonance condition 

no) + mX2 = 0 (11) 

one can see that the number of  resonances for a given harmonic number n and for a 
frequency interval of  unity is proportional to n: 

N~ ~: n (12) 

Overlapping of resonances means that t]he sum of the widths of  all resonances with 
density (12) is greater than one. Hence, we find for the stochasticity limit 

1 ~ ~ n(Aco) = 2el/2 Z (nUn ~o)/~I) 1/2 (13) 
n 

822/3/3-5 
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Replacing the sum by an integral and solving for E, we have 

E ~ 1 (nf,~ aoJ /aI )  ~/2 dn  (14) 

I f  E ~ 1, the above formulas are no longer valid. In this case, a much stronger 
instability than that due to the overlapping of high-harmonic resonances occurs. 
It  is caused by the overlapping o f f i r s t  harmonic resonances? A more realistic estimate 
for this stochasticity limit can be given by investigating the local instability. (a) 

Evaluation of the expression (14) will be carried out in subsequent sections for 
particular models. The extension of the analysis to the case of many-dimensional 
system will be done in Section 3.4. 

3. C O H P U T A T I O N A L  H O D E L S  

All computational models are transformations since they are much more con- 
venient than differential equations, both for computation and for analytic estimates. 

3.1. The  First  Mode l  

The model used to study the influence of high-order resonances consists of  the 
following transformations, where I and 95 are amplitude and phase before the trans- 
formation, I '  and qS' are those after the transformation: 

where 

i '  = + ,/(95), 95' = {95 + r )  (15) 

[r189 _ r 0 ~ r < �89 (16) 
f ( r  = [(95 --  �89 --  95)]k, �89 ~< 95 < 1 

and {95 + I ' }  denotes the fractional part  of 95 + I ' .  

The (k + 1)th derivative of  the function f(95) has discontinuities. For n --> co, 
its spectrum becomes, asymptotically, 

f~ ~ n -(7~+2) (17) 

The width of the resonances is, f rom (13), since ~oJ /~I  = I , 

(n A o) (18) 

The integral (14) converges for k > 1, in which case the stochasticity limit takes 
the form 

, ~-- [(k - -  1)/2] 2 (19) 

We use this expression to denote terms in the first-order series (3) as distinct from high-order 
resonances. 
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For k < 1 (k = 0, --1, --2), one can estimate from (18) the critical harmonic number 
na where the overlapping starts: 

nl ~ E a/(k-l/ (20) 

The overlapping causes diffusion (4). The diffusion rate becomes smaller when nz 
grows. 

When k = 1, the divergence of (14) is only a logarithmic one: 

nl ~ exp(1/e 1/2) (21) 

This last case is very sensitive to the influence of high-order resonances. The 
preliminary computational results indicate a diffusion rate which decreases very 
rapidly when e becomes smaller, in agreement with our main hypothesis concerning 
the negligible role of  high-order resonances (see Section 4.1). 

In the case of overlapping of first-harmonic resonances [see remark following 
Eq. (14)], we linearize the transformation (15) and write 

I '  E I 
= 

where E = 4 ' ( r  
We find the eigenvalues A of this matrix in the usual way: 

)~ = 1 + (E/2) • [E(1 q- El4)] a/~ 

(22) 

As a consequence of the dependence o f f ' ( r  on q~, there are always both stable 
and unstable regions. An estimate of the stable region is 

I t~ § 121 < 2 (24) 

Hence, the perturbation must lie within the limits (4) 

--4 < / ?  < 0 (25) 

where/~ is the maximum value of E within the range of r 

3.2. The Second Model 

The second model is 

I '  = I -  r r = r q- I '  (26) 

Linearization as described in Section 3.1 allows the calculation of the critical 
value r of  the phase: 

r ~ [4/(2k + 1)] 1/2~ (27) 

(23) 
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3.3. The Third Model 

The third model replicates, to first order in e, the collision between a particle 
and the counterrotating beam of a colliding beam devicelSl: 

I' = I - <  (2e ~/I)(sin r  r 

r = r -- co + (e/V/I)(cos r  r 
(28) 

A peculiar property of this model is the constant frequency co for the unperturbed 
system. Thus, the small nonlinearity arises only as a result of the perturbation: 

dc%ff /dI  ~ ~ (29) 

In this case, the approximation (4) is not very good but can be used for estimates 
in order of magnitude. Because of (29), a better estimate of the stochasticity limit is 

E ~ �89 (nf~) ~/2 dn (30) 

3.4. The Fourth Model 

This model consists of N coupled nonlinear oscillators 

i ;  = f, IF[ r 
m @i 

r = + i ;  
(31) 

In estimating the stochasticity limit of this many-dimensional model, we note that 
the limit is sufficiently below the one for the one-dimensional case that we can neglect 
one-dimensional resonances. The quantity 

e ~ t* 1-I r ~ ( t* /N)  cN--1 (32) 
~nv~i 

now plays the role of the small parameter, where r stands for the maximum value 
of r assumed to be about the same for all phases; the last estimate is the mean value 
of perturbation. 

We assume further that the perturbation spectrum is similar to that of a &function 
up to harmonic numbers ~ k .  Further, it is clear that we need only take into account 
the simple resonances which correspond to a set of surfaces (layers) in phase space: 

n w q - m  = 0 (33) 

where n and m are integers. 
Other resonances are formed by the intersection of simple ones and, hence, 

occupy a considerably smaller fraction of phase space. Because of  the assumed 3- 
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function spectrum, the width of all resonances is about the same. I t  is therefore 
sufficient to calculate their mean spacing. 

In a simpler case with m ---- 0, resonances form a cluster in co space with a common 
point co = 0. Thus, it is obvious that the mean spacing depends on the distance f rom 
this point. Let us consider the projection of  the resonant planes (33) onto the (N --  1)- 
dimensional sphere with radius ]co I. When N>~ 1, the average one-dimensional 
spacing of resonances on this sphere can be shown to be of  the order 

3co/] co I ~ 1/~/N-(2no) N (34) 

where n o is the maximum harmonic number for each dimension. 
I f  m is no longer zero, we can consider an (N + 1)-dimensional space with an 

additional frequency (nco § m~2 = 0), the physical phase space being the intersection 
of an N-dimensional sphere with the plane X2 = 1. Then, we obtain, in a similar 
manner as above, 

~co ~ [(1 + [ co2 I)/(N + 1)]*/2[1/2nm(2no) u] (35) 

where the effective number of  harmonics n~ is determined by 

n~ ---- max(no, no I co / ~/N-) (36) 

Combining (8), (10), and (32), we find for the width of a resonance 

~co = [ ( . A / n N )  CN-q~/2 (37) 

wheref~ is the amplitude of the harmonic in question, (6). For a 3-function spectrum, 
it can be estimated from the normalization condition ~ f n  2 ~ 1, 

f~ ~ k-(N-1)/2 (38) 

Using the overlapping condition Sco ~ Aco, the final estimate for the stochasticity 
limit of  a many-dimensional system becomes, with (35) and (37) 

/zo ~ [(1 + [co 12)14n~2](4no21~/kr -N+I (39) 

4. N U M E R I C A L  E X P E R I M E N T S  

A series of  programs was developed. The main loop of the programs was written 
in machine language (AscENT) for the CDC 6600 computer at CERN. I t  fitted into 
the central processor's instruction stack, and avoided all memory references. 
We achieve a computation time of only 10/~sec for k = 1, and 12.5 ~sec for k = 2 
in (15). At the end of the computation, a map of a part  of  phase space showing the 
occupation of 100 • 100 cells was plotted. An example of  this output is shown in 
Fig. 1. 
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Fig. 1. Phase-space map for the model (15) with the function (40): ~ = 1.145, t = 3 x 10t  
The region occupied by the trajectory is shown by 0 and *, its periodic extensions b y . ;  cells common 
to both regions are marked by *. 
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4.1. First Model Results 

Table I shows a comparison of the analytic estimates (25) and the computed values 
of  the perturbation ~ at the stochasticity limit. A weak diffusion also exists below the 
strong instability limit. For example, the diffusion rate at E ~ 2.1 is three orders of  
magnitude lower than at e = 8. On the other hand, for k ~ 2, we have not observed 
any diffusion below the strong instability limit. 

All these results may be considered as a qualitative confirmation of the estimate 
(14) for resonance overlapping. To this extent, they confirm our hypothesis of  negli- 
gible influence of high-order resonances on the overlapping condition. However, 
we would like to emphasize that this confirmation only concerns the one-dimensional 
motion, but not the many-dimensional one, which might be quite different. To 
clarify this, a system of coupled oscillators of  the type (15) should be investigated. 

It  is interesting to mention here one more model used for numerical experiments, 
namely a version of the first model (15) with the function 

t~ 1 0 < 4 < � 8 9  (4o) - 4,  
f ( 4 )  = --  4, �89 ~ 4 < 1 

The smoothness of this function corresponds to k = 0, hence, the integral (14) 
diverges strongly. Nevertheless, numerical experiments with this model indicate that 
the diffusion stops after a certain time. 

Figure 1 shows a phase-plane map of the trajectory (0) and its periodic extension 
along the I axis (.). Although the diffusion covers a full period in the I direction, as is 
indicated by the bins (*) common to both regions, diffusion into the adjacent periods 
in I does not occur, at least for up to 3 • 106 steps. This might be due to a very thin 
gap inside the set of  overlapping resonances which extends over the whole range of 4. 
A similar phenomenon was observed during numerical studies by Hine .(6~ 

4.2. Second Model Results 

The analytic estimate (27) and the computed results for the critical value of the 
phase 4~ in the second model are compared in Table II. 

4.3. Fourth Model Results 

As an example, we consider a run with 

N = 10, [co[ ~ 0.02, 40 ~ 0.5, k = 1 /~/~ ~ H O ,  

Table I. Stochastic Limits for the First Model 

k Estimated ~ Computed r 

1 8 4.2, --9.2 

2 160 56 
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Table I I .  Critical Phases for the Second Model  

k Estimated r Computed r 

1 1.15 0.76 

4 0.9 0.78 

in which we obtained the stochasticity limit/x~ = 0.2. Because of the high power in 
(39), the estimate for/~c is very sensitive to the estimate for n o . Hence, it is more 
appropriate to compare the quantity n o rather than/x~. We find n o = 0.7, in reason- 
able agreement with the expected value n 0 ~ k = 1. 

5. A S L O W  I N S T A B I L I T Y  

5.1. The Model 

It is important to ascertain whether nonlinear motion is absolutely stable, i.e., 
stable for infinite time, below the stochasticity limit where the resonances do not 
overlap, or whether there is always a slow instability in this region. At the present 
time, the only method by which this question can be answered is by experiments 
either with real systems or with mathematical models. In this section, we report on a 
numerical example which displays a slow instability in the region considerably below 
the stochasticity limit. 

We employ the transformation 

I1 '  = [1 - -  r @ J[1r , 

r = r + i ; ,  r =- +/2' 
(41) 

which is a special case of the fourth model (31). 
Again, it was possible to write the whole main loop in ASCEYT and to fit it into 

the instruction stack. We achieved a computation time of only 9/~sec per step 
in spite of the high number of multiplications in (41). 

5.2. An Example 

First of all, we want to know the region of one-dimensional stability, for/z = 0. 
This was obtained in a single run with the transformation (41) by periodic extension 
of  the interval (--1, 1). We found that for I = 0, the phase r must lie in the interval 
(--0.78, --0.78). 

It turned out that the size of the stable interval depends upon the duration of the 
motion. The above value corresponds to t = 106; for t = 2 • 105, the stable phase 
interval is increased by 4 ~.  A similar effect was observed for the model (31) with 
k = 1, in which case the stable interval even increased by about 10 ~ by decreasing 
the motion time from 106 down to 3 • 105. 

Figure 2 shows the area of the two-dimensional projection of four-dimensional 
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Fig. 2. An example of long-term instability for two-dimensional transformation (41). Initial condi- 
tions:/10 = /2o = 0, ~ozo = 0.375, ~%o = 0.721, ~ = 0.00115 ; % ~ 0.78. S is the area of the projection 
of the motion onto the plane (~i, ~b~); re is the rise time for S(t). 

phase space onto the plane (~1, ~b2) occupied by the motion, versus time for particular 
initial conditions. The most striking feature of the phenomenon observed is the 
exponential rather than linear or tl/2-1ike development of  the instability, which lasts 
for about 3.648 • 108 steps until the trajectory passes into the region of one-dimen- 
sional instability. 

This long-term instability cannot be explained by rounding-off errors in the 
transformation, as a run with 10 s steps and with/~ = 0 was perfectly stable. Similar 
conclusions can also be drawn from an estimate of  the rounding-off errors: The upper 
limit is obtained as in Ref. 7 and becomes I Aq~ i ~< 10-4, which is considerably less 
than the width of a cell in the map (2 • 10 2). 

5 . 3 .  D i s c u s s i o n  

I t  is difficult to carry out definite computational work on slow instabilities since 
the computer time involved quickly becomes prohibitive. To ge t  some insight into 
the mechanism of the instability, we have investigated the local instability near the 
beginning of the computation. Local instability is a powerful tool to locate, in short 
runs, regions with dangerous initial conditions by running simultaneously two 
initially very close (A I  ~ Ac} ~ 10 -z~ trajectories, and by observing the differences 

in momenta  and phases. 
In contrast to one-dimensional motion, in many-dimensional systems, local 

instability and real instability are typically related. 
A possible mechanism for the slow instability observed is diffusion along a 
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resonance surface near the separatrix.18> It  is well known that in this region an unstable 
layer always exists. (v-l~ The instability must then depend on the initial conditions; 
i.e., on whether the initial point lies inside one of these layers or not. Our investigations 
of  local instability confirm this for the observed instability. In Fig. 3, the differences 
of  phases are plotted as functions of  time. The general behavior of  differences is 
approximately exponential, with rise times in the range from 760 to 1150 steps. 

Additional experiments of local instability were performed for various initial 
conditions: 0.5 < ~0 < 0.75 (Ii0 = 0) and t-+ 105. In 11 of 26 cases, an unambiguous 
instability was observed; an example is shown in Fig. 4. The difference A I i s  growing 
over more than 10 orders of  magnitude and reaches AImax  ~ 10 -3, the rise time 
~-+ ~ 4 • 103 is about four times larger than for the case shown in Fig. 3. The most 
striking difference between stable and unstable trajectories is the value of A I  by the 
end of computation. For a stable trajectory, the value of A I  is about 7 orders of  
magnitude less than for an unstable trajectory. 

The results of  experiments on local instability are summarized in Table III .  All 
unstable cases are grouped together at the end of the table according to their instability 
rates; the latter are given by separate averages over two momenta (I) and two 
phases (4~). These values are split into groups. Instability rates averaged over the 
cases of  a group are given in the last column. The groups correspond apparently to 
resonances of  different harmonics. The considerable difference between resonances 
shows that the system is close to the stochasticity limit where resonances just touch 
rather than overlap. This is also confirmed by the value of the relative unstable area, 

t,+,l+~rl + 

i 

-64 

I 

-8- . ....~ / z', = 76o 
. , q  

-9- / ~ /  / ~'~ ~ '  

-10 -  

Fig+ 3. 

o ~o~o 2obo , 3ooo 

Initial local instability in ~bl, ~ for the run of Fig. 2, with All = AI~ = O, 
A~% = 1.72 x 10 -1~ A~% = 1.56 x 10 -1~ 
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Local instability for the run in Fig. 2 except that ~bzo = 0.745; A = AI1 ; unstable case. 

which can be estimated as the fraction of unstable cases: 11/26 ~ 43 ~ .  Yet, the 
stochasticity is sufficient to provide fast energy exchange between two oscillators (41). 
For the case in Fig. 4, it takes about 105 steps, but this is actually the slowest instability 
in Table III; a typical figure is t ~ 104. 

However, the increase of the full energy of both oscillators toward the border 
of one-dimensional instability takes a remarkably longer time, about four orders 
more (!). This illustrates clearly the big difference between strong stochastic instability 
under resonance overlapping and a slow, many-dimensional instability probably 
due to diffusion along the set of intersecting resonance surfaces. 

6. C O N C L U S I O N S  

In Sections 2-4, we saw that the stochasticity limit of nonlinear oscillating systems 
may be readily estimated analytically and we confirmed by numerical experiment the 
reasonably good accuracy of these estimates. 

In Section 5, we observed a case of long-term instability below the stochasticity 
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Table I I I  

I r 

r (}20 Aml~x <Tel> • 10  ~ A m a x  <'cel>• 1 0  ~ <~21> x 102 

0.711 0.656 2 • 10 -z~ - -  5 x 10 -9 - -  
0.680 0.618 10 -11 - -  2 X 10 -8 - -  
0.596 0.723 3 • 10 -1~ - -  3 X 10 -s - -  
0.649 0.625 6 • 10 -11 - -  4 • 10 -9 - -  
0.517 0.615 5 • 10 - n  - -  2 • 10 -9 - -  
0.610 0.580 9 X 1 0  -11  - -  6 x 10 -9 - -  
0.672 0.642 8 • 10 -lz - -  2 • 10 -8 - -  
0.560 0.588 3 • 10 -z~ - -  2 X 10 -8 - -  
0.589 0.503 3 • 10 -1~ - -  5 • 10 -9 - -  
0.601 0.648 4 X 10 -1~ - -  6 X 10 .9 - -  

0.531 0.726 2 • 10 -1~ - -  10 -s - -  
0.538 0.714 9 • 10 - t l  - -  2 • 10 9 __ 
0.670 0.640 7 • 10 11 __ 2 • 10 -8 - -  
0.681 0.606 5 • 10 -~~ - -  2 • 10 -8 - -  
0.574 0.560 2 • 10 -10 - -  10 -8 - -  

0.587 0.744 2 • 10 z 1.2 9 • 10 -1 1.2 
0.516 0.734 2 • 10 z 1.2 9 • 10 -z 1.1 
0.744 0.533 10 -1 1.2 9 • 10 -1 0.9 
0.750 0.598 10 -1 1.0 9 • 10 -1 1.1 
0.628 0.553 7 X 10 -2 1.0 9 X 10 -1 1.1 
0.682 0.560 7 • 10 -2 0.9 9 X 10 z 0.9 

0.522 0.556 4 X 10 2 0.54 9 • 10 -1 0.54 
0.535 0.512 3 • 10 -2 0.33 9 X l 0  - 1  0.31 

0.747 0.658 3 • 10 -1 0.15 9 • 10 -1 0.15 
0.554 0.556 7 • 10 .2 0.13 9 x 10 z 0.13 

0.555 0.745 5 • 10 .2 0.025 7 • 10 -z 0.025 
i 

m 

1.1 

0.54 
0.32 

t 0.14 

0.025 

l imi t ,  b u t  w e  h a v e  n o t  s t u d i e d  i t  i n  su f f i c ien t  de t a i l  t o  e l u c i d a t e  i ts  m e c h a n i s m .  T h i s  

e x a m p l e  f r o m  n u m e r i c a l  c o m p u t a t i o n s ,  t h e  f i rs t ,  t o  t h e  b e s t  o f  o u r  k n o w l e d g e ,  is 

p a r t i c u l a r l y  i n t e r e s t i n g .  

W e  h a v e  n o t  t r e a t e d  t h e  j o i n t  i n f l u e n c e  o f  b o t h  n o n l i n e a r  r e s o n a n c e s  a n d  a 

d i f f u s i o n  p r o c e s s  o f  s o m e  k i n d ,  e .g . ,  ga s  s c a t t e r i n g .  I n  t h i s  case ,  n o n l i n e a r  r e s o n a n c e s  

m a y  a c c e l e r a t e  t h e  d i f f u s i o n  p r o c e s s  c o n s i d e r a b l y  e v e n  i f  t h e  m o t i o n  is a b s o l u t e l y  

s t a b l e  w i t h o u t  d i f fu s ion .  I t  is n o t  e x c l u d e d  t h a t  t h i s  effect  w a s  o b s e r v e d  in  Re f .  11, 

n o r  t h a t  i t  m i g h t  b e  o f  i m p o r t a n c e  in  t h e  a p p l i c a t i o n  o f  t h i s  w o r k  t o  p r o t o n  s t o r a g e  

r ings .  
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