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Qualitative analytic estimates of the stochasticity limit of one- and many-dimensional
nonlinear oscillating systems are derived using the overlapping of first~order resonances
as a criterion for stochasticity. Computational results obtained with several very
simple transformations are compared with the analytic estimates. Numerical studies
significantly below the stochasticity limit of a many-dimensional nonlinear system
reveal an example of a very slow instability, the first, to the best of our knowledge.
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1. INTRODUCTION

Motivated by the very important question of long-term stability of particle beams in
storage rings, we study in this paper some mathematical models, namely nonlinear
transformations, which replicate the essential elements determining the dynamical
behavior of particle motion in a storage ring.

In Sections 24, qualitative analytic estimates of the stochasticity limit of one-
and many-dimensional nonlinear oscillating systems are derived using the overlapping
of first-order resonances as a criterion for stochasticity. Computational results
obtained with several very simple transformations are compared with the analytic
estimates. ;

The stochasticity limit, with instability above it and apparent stability below it,
affords a gross description of the behavior of stored particles. Especially for protons
and antiprotons, where radiation damping is negligibly small, it is important to
ascertain whether or not motion below the stochasticity limit is truly stable. In
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Section 5, we present a numerical example of a very slow instability below the stochas-
ticity limit of a many-dimensional nonlinear system.

2. ANALYTIC ESTIMATE OF THE STOCHASTICITY LIMIT
2.1. Equations of Motion

Consider the following canonical equations for a many-dimensional nonlinear
oscillating system:

I=ef(I,0,1), 0=+ eddb,1) '6))

Here, I and 8 are N-dimensional vectors of momenta and phases, respectively,
and € is a small perturbation parameter.

The unperturbed motion with € = 0 is of maximum stability (it possesses all N
motion integrals I = const). The problem to be studied is the qualitative behavior

of the perturbed motion with € 5= 0.
In the zeroth approximation (e = 0) the system (1) has the following solution:

I = const, 0 = w()t )

2.2. Resonances

We expand the first equation of (1) in a multiple Fourier series

I= €Y fudl)exp(ind + imx) €))

Introducing 2 = 2#/T, where T is the period of the external perturbation, and
substituting the solution (2) into the right-hand side, we find the following new set of
equations:

I'= €Y frual)exp(ind -+ imx)
b =u), =20

We have neglected the second term in the equation for 8, Eq. (1). This is a good
approximation if the nonlinearity coefficient is not small™V:

a = |[({jw) 0wfol | > € ®)

The opposite case is considered in Section 3.3.

2.3. Resonance Width

For sufficiently small perturbations €, only resonant conditions can have an
important influence on the motion. In this case, the phase ,,, = n8 - m« is a slow
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variable. The phase oscillation equation for this isolated resonance can be found by
combining Eqgs. (4):

b = 10 + mic = 0l = n do()/dt = n(ew/el) 1
Bran = ne@w[OI) frun(l) eXP(ith )

Taking the real part of this expression,

(6)

‘/’mn - ne(aw/al)fmn(l) €Os Sl'mn (7)

and linearizing it in the vicinity of a fixed point, we obtain the following frequency
for small amplitude oscillations:

Qi = ne(@w/0I) frnall) ®)
It may be seen that (7) can be derived from the following Hamiltonian:

This allows us to calculate over whglt range of frequencies dw the motion will lock
onto the resonance, by comparing i,,, to the depth of the potential well. We find

nAw = 2 = 4Q0m (10)

2.4. Overlapping of Resonances

It is well confirmed® that there occurs a strong instability with randomlike
motion when many resonances overlap. The earliest indication for such an instability
was probably found by Goward® and Hine.®® As an estimate for the stochasticity
limit, we adopt the condition of resonance overlapping. The main difficulty is con-
nected with the high-order resonances [the approximations following after (4)],
where the question arises whether the contribution of high-order resonances is
essential for the overlapping condition. We base our estimates on the hypothesis that
it is sufficient to take into account only first-order resonances according to (4) and
that the influence of all higher-order approximations can be neglected.

Consider first the one-dimensional case. From the resonance condition

nw + m = 0 (11)

one can see that the number of resonances for a given harmonic number # and for a
frequency interval of unity is proportional to n:

N, xn 12)

Overlapping of resonances means that the sum of the widths of all resonances with
density (12) is greater than one. Hence, we find for the stochasticity limit

1 ~Y n(dw) = 262 (nf, dw/oI)V? (13)

n n

822/3/3-5
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Replacing the sum by an integral and solving for €, we have
@ —2
e ~1|[ @ ewojerye an] (19)
1

If € ~ 1, the above formulas are no longer valid. In this case, a much stronger
instability than that due to the overlapping of high-harmonic resonances occurs.
It is caused by the overlapping of first harmonic resonances.* A more realistic estimate
for this stochasticity limit can be given by investigating the local instability.*

Evaluation of the expression {(14) will be carried out in subsequent sections for
particular models. The extension of the analysis to the case of many-dimensional
system will be done in Section 3.4,

3. COMPUTATIONAL MODELS

All computational models are transformations since they are much more con-
venient than differential equations, both for computation and for analytic estimates.

3.1. The First Model

The model used to study the influence of high-order resonances consists of the
following transformations, where I and ¢ are amplitude and phase before the trans-
formation, 1" and ¢’ are those after the transformation:

=TI+, ¢ =10 (13)
where
4G — 0<¢ <}
O =16—pa - pr. i1<é<lI (1)

and {¢ - I'} denotes the fractional part of ¢ + I’
The (k - )th derivative of the function f(¢) has discontinuities. For n — oo,
its spectrum becomes, asymptotically,

Foy ~ D) (17)
The width of the resonances is, from (13), since dw/8l = 1,
(n dw) ~ elip—(kt1/2 (18)

The integral (14} converges for k£ > 1, in which case the stochasticity limit takes
the form

€~ [(k — D/2] (19)

4 We use this expression to denote terms in the first-order series (3) as distinct from high-order
resonances.
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Fork < 1(k = 0, —1, —2), one can estimate from (18) the critical harmonic number
ny where the overlapping starts:

7y A @D (20)

The overlapping causes diffusion®. The diffusion rate becomes smaller when »;
grows.
When k = 1, the divergence of (14) is only a logarithmic one:

1y ~ exp(l/el/2) Qe

This last case is very sensitive to the influence of high-order resonances. The
preliminary computational resuits indicate a diffusion rate which decreases very
rapidly when € becomes smaller, in agreement with our main hypothesis concerning
the negligible role of high-order resonances (see Section 4.1).

In the case of overlapping of first-harmonic resonances [see remark following
Eq. (14)], we linearize the transformation (15) and write

I 1 E I
(¢'):(1 1—}—E\)(q5) (22)
where E = ef ().
We find the eigenvalues A of this matrix in the usual way:

A =1+ (Ef2) £ [E(1 + E/4)]'? (23)

As a consequence of the dependence of f'(¢$) on ¢, there are always both stable
and unstable regions. An estimate of the stable region is

[A 4+ A <2 24
Hence, the perturbation must lie within the limits®
—4<E<0 25)

where £ is the maximum value of E within the range of ¢.

3.2. The Second Model
The second model is
I = ] — ¢+, ¢ =¢+1TI (26)

Linearization as described in Section 3.1 allows the calculation of the critical
value ¢, of the phase:

bo ~ [4/(2k + D}/ @7)
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3.3. The Third Model

The third model replicates, to first order in €, the collision between a particle
and the counterrotating beam of a colliding beam device®:

I' = I+ (2 VI)sin ¢) f(v/T cos ¢) 8)
¢ = ¢ + o + (/v Dicos ¢) f(v/T cos $)

A peculiar property of this model is the constant frequency w for the unperturbed
system. Thus, the small nonlinearity arises only as a result of the perturbation:

dweff/dl € (29)

In this case, the approximation (4) is not very good but can be used for estimates
in order of magnitude. Because of (29), a better estimate of the stochasticity limit is

IO (30)

3.4. The Fourth Model

This model consists of N coupled nonlinear oscillators

=1 — "+ p ] ¢a
s (1)
(ﬁi, = 952 + 1

In estimating the stochasticity limit of this many-dimensional model, we note that
the limit is sufficiently below the one for the one-dimensional case that we can neglect
one-dimensional resonances. The quantity

e~p [l du~ N g™ (32)

m 1

now plays the role of the small parameter, where ¢, stands for the maximum value
of ¢, assumed to be about the same for all phases; the last estimate is the mean value
of perturbation.

‘We assume further that the perturbation spectrum is similar to that of a -function
up to harmonic numbers ~k. Further, it is clear that we need only take into account
the simple resonances which correspond to a set of surfaces (layers) in phase space:

nw+m=20 (33)
where n and m are integers.

Other resonances are formed by the intersection of simple ones and, hence,
occupy a considerably smaller fraction of phase space. Because of the assumed 8-
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function spectrum, the width of all resonances is about the same. It is therefore
sufficient to calculate their mean spacing,

In a simpler case with m = 0, resonances form a cluster in w space with a common
point w == 0. Thus, it is obvious that the mean spacing depends on the distance from
this point. Let us consider the projection of the resonant planes (33) onto the (N — 1)-
dimensional sphere with radius | w|. When N> 1, the average one-dimensional
spacing of resonances on this sphere can be shown to be of the order

Sw/| w | ~ 1)V NQ2ng)¥ (34)

where #, is the maximum harmonic number for each dimension.

If m is no longer zero, we can consider an (N + 1)-dimensional space with an
additional frequency (nw -+ mf2 = 0), the physical phase space being the intersection
of an N-dimensional sphere with the plane £ = 1. Then, we obtain, in a similar
manner as above,

Seo ~ [(1 + | ? DN + D1 /2m,(2n0)] (35)
where the effective number of harmonics #,, is determined by
Ny, = max(n, , 1y | @ | VN) (36)
Combining (8), (10), and (32), we find for the width of a resonance

dw = [(ufu/nN) VT2 GDN

where £, is the amplitude of the harmonic in question, (6). For a 8-function spectrum,
it can be estimated from the normalization condition ¥ f,2 ~ 1,

Jo o~ kLR (38)

Using the overlapping condition 8w ~ dw, the final estimate for the stochasticity
limit of a many-dimensional system becomes, with (35) and (37)

pre ~ [(1+ [ o [2)/dn,2(dng*/v k) ™+ (39)

4. NUMERICAL EXPERIMENTS

A series of programs was developed. The main loop of the programs was written
in machine language (ASCENT) for the CDC 6600 computer at CERN. It fitted into
the central processor’s instruction stack, and avoided all memory references.
We achieve a computation time of only 10 usec for k = 1, and 12.5 usec for k = 2
in (15). At the end of the computation, a map of a part of phase space showing the
occupation of 100 x 100 cells was plotted. An example of this output is shown in
Fig. 1.
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Fig. 1. Phase-space map for the model (15) with the function (40): e = 1.145,
The region occupied by the trajectory is shown by 0 and *, its periodic extensions by .; cells common
to both regions are marked by *,
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4.1. First Model Results

TableIshows a comparison of the analytic estimates(25)and the computed values
of the perturbation e at the stochasticity limit. A weak diffusion also exists below the
strong instability limit. For example, the diffusion rate at € ~ 2.1 is three orders of
magnitude lower than at € = 8. On the other hand, for & = 2, we have not observed
any diffusion below the strong instability limit.

All these results may be considered as a qualitative confirmation of the estimate
(14) for resonance overlapping. To this extent, they confirm our hypothesis of negli-
gible influence of high-order resonances on the overlapping condition. However,
we would like to emphasize that this confirmation only concerns the one-dimensional
motion, but not the many-dimensional one, which might be quite different. To
clarify this, a system of coupled oscillators of the type (15) should be investigated.

Tt is interesting to mention here one more model used for numerical experiments,
namely a version of the first model (15) with the function

. (]S % 0 < 95 < %‘ N

The smoothness of this function corresponds to & = 0, hence, the integral (14)
diverges strongly. Nevertheless, numerical experiments with this model indicate that
the diffusion stops after a certain time.

Figure 1 shows a phase-plane map of the trajectory (0) and its periodic extension
along the 7 axis (.). Although the diffusion covers a full period in the 7 direction, as is
indicated by the bins (*) common to both regions, diffusion into the adjacent periods
in I does not occur, at least for up to 3 x 106 steps. This might be due to a very thin
gap inside the set of overlapping resonances which extends over the whole range of ¢.
A similar phenomenon was observed during numerical studies by Hine .

4.2. Second Model Results

The analytic estimate (27) and the computed results for the critical value of the
phase ¢, in the second model are compared in Table II.

4.3. Fourth Model Results
As an example, we consider a run with

N=10, |w|~002, ¢y~05 n,=mn, k=1

Table 1. Stochastic Limits for the First Model

k Estimated Computed e

1 8 42,92
2 160 56
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Table I}. Critical Phases for the Second Model

k Estimated ¢, Computed ¢,
1.15 0.76
4 0.9 0.78

in which we obtained the stochasticity limit p, = 0.2. Because of the high power in
(39), the estimate for p, is very sensitive to the estimate for n, . Hence, it is more
appropriate to compare the quantity », rather than u, . We find n, = 0.7, in reason-
able agreement with the expected value ny ~k = 1.

5. A SLOW INSTABILITY
5.1. The Model

It is important to ascertain whether nonlinear motion is absolutely stable, i.e.,
stable for infinite time, below the stochasticity limit where the resonances do not
overlap, or whether there is always a slow instability in this region. At the present
time, the only method by which this question can be answered is by experiments
either with real systems or with mathematical models. In this section, we report on a
numerical example which displays a slow instability in the region considerably below
the stochasticity limit.

We employ the transformation

L'=16—¢°+ pds, L =1~ ¢ + puéy
951, = 951 + I, (}[’2, = 452 + 1
which is a special case of the fourth model (31).
Again, it was possible to write the whole main loop in ASCENT and to fit it into

the instruction stack. We achieved a computation time of only 9 usec per step
in spite of the high number of multiplications in (41).

(41)

5.2. An Example

First of all, we want to know the region of one-dimensional stability, for u = 0.
This was obtained in a single run with the transformation (41) by periodic extension
of the interval (—1, 1). We found that for I = 0, the phase ¢ must lie in the interval
(—0.78, +0.78).

It turned out that the size of the stable interval depends upon the duration of the
motion. The above value corresponds to # = 10¢; for t = 2 x 10%, the stable phase
interval is increased by 4 9. A similar effect was observed for the model (31) with
k =1, in which case the stable interval even increased by about 10 9] by decreasing
the motion time from 10° down to 3 x 105,

Figure 2 shows the area of the two-dimensional projection of four-dimensional
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T 14
In{ 48 45 %
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64 M2
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In{aS}
44 L8
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24 -4
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0 . — .
108 2410 3.10° t 4108

Fig. 2. An example of long-term instability for two-dimensional transformation (41). Initial condi-
tions: Ly = Ly = 0, g3y = 0.375, gy = 0.721, p = 0.00115; ¢, ~ 0.78. S'is the area of the projection
of the motion onto the plane (¢, , 2); 7. is the rise time for S(z).

phase space onto the plane (¢, , ¢,) occupied by the motion, versus time for particular
initial conditions. The most striking feature of the phenomenon observed is the
exponential rather than linear or 71/2-like development of the instability, which lasts
for about 3.648 x 108 steps until the trajectory passes into the region of one-dimen-
sional instability.

This long-term instability cannot be explained by rounding-off errors in the
transformation, as a run with 108 steps and with g = 0 was perfectly stable. Similar
conclusions can also be drawn from an estimate of the rounding-off errors: The upper
limit is obtained as in Ref. 7 and becomes | 4¢ | < 104, which is considerably less
than the width of a cell in the map (2 x 1072).

5.3. Discussion

It is difficult to carry out definite computational work on slow instabilities since
the computer time involved quickly becomes prohibitive. To get some insight into
the mechanism of the instability, we have investigated the local instability near the
beginning of the computation. Local instability is a powerful tool to locate, in short
runs, regions with dangerous initial conditions by running simultaneously two
initially very close (41 ~ A¢ ~ 10-1%) trajectories, and by observing the differences
in momenta and phases.

In contrast to one-dimensional motion, in many-dimensional systems, local
instability and real instability are typically related.

A possible mechanism for the slow instability observed is diffusion along a



318 B. V. Chirikov, E. Keil, and A. M. Sessler

resonance surface near the separatrix.® It is well known that in this region an unstable
layer always exists.(™1® The instability must then depend on the initial conditions;
i.e., on whether the initial point lies inside one of these layers or not. Our investigations
of local instability confirm this for the observed instability. In Fig. 3, the differences
of phases are plotted as functions of time. The general behavior of differences is
approximately exponential, with rise times in the range from 760 to 1150 steps.

Additional experiments of local instability were performed for various initial
conditions: 0.5 < ¢,y << 0.75 (o = 0) and ¢ = 10°. In 11 of 26 cases, an unambiguous
instability was observed; an example is shown in Fig. 4. The difference A7is growing
over more than 10 orders of magnitude and reaches Al &~ 1073, the rise time
T, &~ 4 x 10% is about four times larger than for the case shown in Fig. 3. The most
striking difference between stable and unstable trajectories is the value of 47 by the
end of computation. For a stable trajectory, the value of Al is about 7 orders of
magnitude less than for an unstable trajectory.

The results of experiments on local instability are summarized in Table ITI. All
unstable cases are grouped together at the end of the table according to their instability
rates; the latter are given by separate averages over two momenta (I) and two
phases (¢). These values are split into groups. Instability rates averaged over the
cases of a group are given in the last column. The groups correspond apparently to
resonances of different harmonics. The considerable difference between resonances
shows that the system is close to the stochasticity limit where resonances just touch
rather than overlap. This is also confirmed by the value of the relative unstable area,

ln!A)"]i

-6

-7

o 1000 2000 t 3000

Fig. 3. Initial local instability in ¢, , ¢, for the run of Fig. 2, with 41, = 4I, = 0,
Ao, = 1.72 x 107, d¢, = 1.56 x 10-1°,
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0 0.2 0.4 0.6 08 t 10x10*

Fig. 4. Local instability for the run in Fig. 2 except that ¢,y = 0.745; 4 = 4I, ; unstable case.

which can be estimated as the fraction of unstable cases: 11/26 ~ 43 %,. Yet, the
stochasticity is sufficient to provide fast energy exchange between two oscillators (41).
For the case in Fig. 4, it takes about 10° steps, but this is actually the slowest instability
in Table I1I; a typical figure is £ ~ 10%

However, the increase of the full energy of both oscillators toward the border
of one-dimensional instability takes a remarkably longer time, about four orders
more (!). This illustrates clearly the big difference between strong stochastic instability
under resonance overlapping and a slow, many-dimensional instability probably
due to diffusion along the set of intersecting resonance surfaces.

6. CONCLUSIONS

In Sections 2-4, we saw that the stochasticity limit of nonlinear oscillating systems
may be readily estimated analytically and we confirmed by numerical experiment the
reasonably good accuracy of these estimates.

In Section 5, we observed a case of long-term instability below the stochasticity
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Table I

1 ¢
10 Bao Amax <ty x 102 ABmax gty x 107 <r7h x 102
0.711 0.656 2 x 107 — 5 x 10-° — —
0.680 0.618 10-4 — 2 x 10-8 — —
0.596 0.723 3 x 10710 — 3 x 10-¢ — —
0.649 0.625 6 x 101 — 4 x 10° — —
0.517 0.615 5% 10-1 — 2 x 10-° — —
0.610 0.580 9 x 10~ — 6 x 10~° — —
0.672 0.642 8 x 101 — 2 x 10°% —_ —
0.560 0.588 3 x 10710 — 2 % 10-% — —
0.589 0.503 3 x 10~ —_ 5 x 10-° — —
0.601 0.648 4 % 101t — 6 % 10~° — —
0.531 0.726 2 x 1010 — 10-8 — —
0.538 0.714 9 x 10-% — 2 X 10~° — —
0.670 0.640 7 x 102 — 2 % 10-% — —
0.681 0.606 5 x 1071 — 2 x 10-® — —
0.574 0.560 2 x 10710 — 10-¢ — —
0.587 0.744 2 x 101 1.2 9 x 101 1.2
0.516 0.734 2 x 10t 1.2 9 x 10! 1.1
0.744 0.533 10! 1.2 9 x 10~ 0.9 11
0.750 0.598 10t 1.0 9 x 101 1.1 ‘
0.628 0.553 7 x 10-2 1.0 9 x 101 1.1
0.682 0.560 7 x 102 0.9 9 x 101 0.9
0.522 0.556 4 x 102 0.54 9 x 10-% 0.54 0.54
0.535 0.512 3 x 102 0.33 9 x 10! 0.31 0.32
0.747 0.658 3 x 101 0.15 9 x 10 0.15 ] 0.14
0.554 0.556 7 x 10-2 0.13 9 x 102 0.13 § o
0.555 0.745 5 x 10-® 0.025 7 x 10-2 0.025 0.025

limit, but we have not studied it in sufficient detail to elucidate its mechanism. This
example from numerical computations, the first, to the best of our knowledge, is
particularly interesting.

We have not treated the joint influence of both nonlinear resonances and a
diffusion process of some kind, e.g., gas scattering. In this case, nonlinear resonances
may accelerate the diffusion process considerably even if the motion is absolutely
stable without diffusion. It is not excluded that this effect was observed in Ref. 11,
nor that it might be of importance in the application of this work to proton storage
rings.
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